A pilot event for a GRE Shared Task Evaluation Campaign

The Attribute Selection for GRE Challenge
Overview

1. Introduction
 1. Background to ASGRE Challenge
 2. Generation of Referring Expressions
 3. The Attribute Selection for GRE Challenge
 • Data and Task
 • Evaluation
 • Organisation

2. System presentations by participants

3. Evaluation results
Background to ASGRE Challenge

- UCNLG’05, Birmingham – tabled question on shared NLG task put to panel on data-driven NLG sparks off interest
- ENLG’05, Aberdeen – discussions, huge interest in topic
- INLG’06, Sydney – special session on sharing data and comparative evaluation; 4 papers, 6 open-mic presentations
- 2006 ACL SIGGEN board elections – nearly all position statements mention mention evaluation
 - break-out group on feasibility of shared task evaluation for GRE
- First NLG Shared Task Evaluation event at UCNLG+MT
Generation of Referring Expressions

- GRE is a field with a long tradition, going back at least to work in the mid-1980s by Appelt, Grosz, Joshi, McDonald and others.
- Field as it is today was shaped by Dale’s work in late 1980s and early 1990s.
- General GRE task: given a domain of entities and a target entity, create a referring expression for the target entity.
- Additional requirements include that RE should be:
 - distinguishing
 - minimal
Generation of Referring Expressions

- GRE is a field with a long tradition, going back at least to work in the mid-1980s by Appelt, Grosz, Joshi, McDonald and others.
- Field as it is today was shaped by Dale’s work in late 1980s and early 1990s.
- General GRE task: given a domain of entities and a target entity, create a referring expression for the target entity.
- Additional requirements include that RE should be:
 - distinguishing
 - minimal.
Generation of Referring Expressions

- GRE is a field with a long tradition, going back at least to work in the mid-1980s by Appelt, Grosz, Joshi, McDonald and others.
- Field as it is today was shaped by Dale’s work in late 1980s and early 1990s.
- General GRE task: given a domain of entities and a target entity, create a referring expression for the target entity.
- Additional requirements include that RE should be:
 - distinguishing
 - minimal

 the red sofa, it, the object, the red sofa facing left, the sofa, the object facing left, the red object, the object in the top left corner, etc.
Generation of Referring Expressions

• GRE is a field with a long tradition, going back at least to work in the mid-1980s by Appelt, Grosz, Joshi, McDonald and others.
• Field as it is today was shaped by Dale’s work in late 1980s and early 1990s.
• General GRE task: given a domain of entities and a target entity, create a referring expression for the target entity.
• Additional requirements include that RE should be:
 • distinguishing
 • minimal

the red sofa, it, the object, the red sofa facing left, the sofa, the object facing left, the red object, the object in the top left corner, etc.
Generation of Referring Expressions

- GRE is a field with a long tradition, going back at least to work in the mid-1980s by Appelt, Grosz, Joshi, McDonald and others.
- Field as it is today was shaped by Dale’s work in late 1980s and early 1990s.
- General GRE task: given a domain of entities and a target entity, create a referring expression for the target entity.
- Additional requirements include that RE should be:
 - distinguishing
 - minimal

 the red sofa, it, the object, the red sofa facing left, the sofa, the object facing left, the red object, the object in the top left corner, etc.
Generation of Referring Expressions

- GRE research looks less at realisation than selection of semantic content, in particular selection of properties to describe referent
- Influential algorithms:
 - Full Brevity Algorithm (Dale, 1992)
 - Incremental Algorithm (Dale & Reiter, 1995)
Attribute Selection for GRE Challenge

• Pilot event:
 • gauge community interest
 • start with small-scale low-risk pilot event
 • relaxed, collaborative atmosphere
 • if successful, grow into larger-scale, longer-term evaluation initiative (series of evaluation events)

• Choice of task for pilot event:
 • GRE: lively and well-defined NLG subfield
 • Sizeable research community working same clearly defined task: attribute selection; with similar inputs/outputs
 • availability of TUNA corpus designed for attribute selection task (van Deemter, Gatt, van der Sluis)
ASGRE Challenge – Overview

• Data:
 • corpus of paired inputs and outputs derived from TUNA corpus
 • divided into training, development and test data

• Task:
 • implement attribute selection method that maps inputs to outputs
 • use training and development data to develop methods

• Participation requirements:
 • submission of report describing method and giving evaluation results for development data
 • after report submission, download test set inputs and submit outputs within 1 week

• Evaluation:
 • participants perform evaluation on development set
 • organisers perform evaluation for test set outputs
ASGRE Challenge – Data

Corpus data:

• Input: sets of attributes for domain entities (target referent and distractors)
• Output: set of attributes for target referent derived from human-produced descriptions of target referent (TUNA elicitation experiment)
• Two subdomains: people and furniture
ASGRE Challenge – Data

This is scenario 4 of 38

Which object is in a red box?

Submit
Which object is in a red box?
<table>
<thead>
<tr>
<th>TRIAL ID</th>
<th>ENTITY ID</th>
<th>TYPE</th>
<th>ATTRIBUTE NAME</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>s101t4</td>
<td>121</td>
<td>target</td>
<td>colour</td>
<td>literal</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>literal</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size</td>
<td>literal</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x-dimension</td>
<td>gradable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y-dimension</td>
<td>gradable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td>distractor</td>
<td>colour</td>
<td>literal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>literal</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size</td>
<td>literal</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x-dimension</td>
<td>gradable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y-dimension</td>
<td>gradable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>distractor</td>
<td>colour</td>
<td>literal</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>literal</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size</td>
<td>literal</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x-dimension</td>
<td>gradable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y-dimension</td>
<td>gradable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>distractor</td>
<td>colour</td>
<td>literal</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>literal</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size</td>
<td>literal</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x-dimension</td>
<td>gradable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y-dimension</td>
<td>gradable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>distractor</td>
<td>colour</td>
<td>literal</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>literal</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size</td>
<td>literal</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x-dimension</td>
<td>gradable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y-dimension</td>
<td>gradable</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>distractor</td>
<td>colour</td>
<td>literal</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>orientation</td>
<td>literal</td>
<td>left</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size</td>
<td>literal</td>
<td>small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x-dimension</td>
<td>gradable</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y-dimension</td>
<td>gradable</td>
<td>3</td>
</tr>
</tbody>
</table>

<TRIAL>
ASGRE Challenge – Data

<TRIAL ID="s101t4">
 <ENTITY ID="121" TYPE="target">
 <ATTRIBUTE NAME="colour" VALUE="blue"/>
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 <ENTITY ID="122" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="1" />
 </ENTITY>
 <ENTITY ID="57" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="1" />
 </ENTITY>
 <ENTITY ID="52" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="1" />
 </ENTITY>
 <ENTITY ID="106" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 <ENTITY ID="41" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 <ENTITY ID="36" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="1" />
 </ENTITY>
</DOMAIN>
</TRIAL>
ASGRE Challenge – Data

<TRIAL ID="s10t4">
 <DOMAIN>
 <ENTITY ID="121" TYPE="target">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="x-dimension" TYPE="gradable" VALUE="1" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 <ENTITY ID="41" TYPE="distractor"> ... </ENTITY>
 <ENTITY ID="36" TYPE="distractor"> ... </ENTITY>
 </DOMAIN>
 <DESCRIPTION>
 ...
 </DESCRIPTION>
</TRIAL>
ASGRE Challenge – Data

<TRIAL ID="s101t4">
 <DOMAIN>
 <ENTITY ID="121" TYPE="target">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="x-dimension" TYPE="gradable" VALUE="1" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 <ENTITY ID="122" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="x-dimension" TYPE="gradable" VALUE="1" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 <ENTITY ID="41" TYPE="distractor">
 <ATTRIBUTE NAME="colour" TYPE="literal" VALUE="blue" />
 <ATTRIBUTE NAME="orientation" TYPE="literal" VALUE="left" />
 <ATTRIBUTE NAME="type" TYPE="literal" VALUE="fan" />
 <ATTRIBUTE NAME="size" TYPE="literal" VALUE="small" />
 <ATTRIBUTE NAME="x-dimension" TYPE="gradable" VALUE="1" />
 <ATTRIBUTE NAME="y-dimension" TYPE="gradable" VALUE="3" />
 </ENTITY>
 </DOMAIN>
 <DESCRIPTION>
 <ATTRIBUTE ID="a150" NAME="colour" VALUE="blue" />
 <ATTRIBUTE ID="a151" NAME="size" VALUE="small" />
 <ATTRIBUTE ID="a152" NAME="type" VALUE="fan" />
 </DESCRIPTION>
</TRIAL>
ASGRE Challenge – Task

• Implement an attribute selection method which maps input domains to attribute sets for the target referent

• Up to participants what the aim is:
 • “humanlikeness”
 • unique identification
 • minimality
 • something else?

• Implies several evaluation methods
Evaluation criteria

1. *Uniqueness*: does the attribute set uniquely describe the target referent?
2. *Minimality*: is the attribute set one of the minimal attribute sets that describes the target referent?
3. *Human-like*: is the attribute set similar to the attribute sets in the corpus?
4. *Identification Accuracy*: does the attribute set enable subjects to identify the target referent correctly?
5. *Identification Speed*: does the attribute set enable subjects to identify a referent quickly?
Organisation

• Based on other NLP shared-task evaluations, SEMEVAL and CoNLL in particular

• Novel aspects:
 • Participants’ reports submitted *before* test data released
 • Participants perform part of the evaluation themselves
 • Use of several evaluation metrics
 • Submission of additional evaluation metrics invited
Participation

• 19 registrations; 13 researchers formed 6 teams and submitted 22 systems by deadline

• Submitting teams:
 • CAM: Computer Lab, Cambridge University, UK
 • DIT: Dublin Institute of Technology, Ireland
 • GRAPH: Universities of Twente and Tilburg, NL, and Macquarie University, Australia
 • IS: University of Stuttgart, Germany
 • NIL: Universidad Complutense de Madrid, Spain
 • TITCH: Tokyo Institute of Technology, Japan